Pareto-based Multi-criteria Evolutionary Algorithm for Parallel Machines Scheduling Problem with Sequence-dependent Setup Times
Authors
Abstract:
This paper addresses an unrelated multi-machine scheduling problem with sequence-dependent setup time, release date and processing set restriction to minimize the sum of weighted earliness/tardiness penalties and the sum of completion times, which is known to be NP-hard. A Mixed Integer Programming (MIP) model is proposed to formulate the considered multi-criteria problem. Also, to solve the model for real-sized applications, a Pareto-based algorithm, namely controlled elitism non-dominated sorting genetic algorithm (CENSGA), is proposed. To validate its performance, the algorithm is examined under six performance metric measures, and compared with a Pareto-based algorithm, namely NSGA-II. The results are statistically evaluated by the Mann–Whitney test and t-test methods. From the obtained results based on the t-test, the proposed CENSGA significantly outperforms the NSGA-II in four out of six terms. Additionally, the statistical results from Mann–Whitney test show that the performance of the proposed CENSGA is better than the NSGA- II in two out of six terms. Finally, the experimental results indicate the effectiveness of the proposed algorithm for different problems.
similar resources
Multi-Objective Unrelated Parallel Machines Scheduling with Sequence-Dependent Setup Times and Precedence Constraints
This paper presents a novel, multi-objective model of a parallel machines scheduling problem that minimizes the number of tardy jobs and total completion time of all jobs. In this model, machines are considered as unrelated parallel units with different speeds. In addition, there is some precedence, relating the jobs with non-identical due dates and their ready times. Sequence-dependent setup t...
full textScheduling jobs on parallel machines with sequence-dependent setup times
The study considers the scheduling problem of identical parallel machines subject to minimization of the maximumcompletion time and the maximum tardiness expressed in a linear convex objective function. The maximum completiontime or makespan is the date when the last job to be completed leaves the system. The maximum tardiness is indicated bythe job that is completed with the lo...
full textscheduling of unrelated parallel machines using two multi objective genetic algorithms with sequence-dependent setup times and precedent constraints
abstract: this paper considers the problem of scheduling n jobs on m unrelated parallel machines with sequence-dependent setup times. to better comply with industrial situations, jobs have varying due dates and ready times and there are some precedence relations between them. furthermore sequence-dependent setup times and anticipatory setups are included in the proposed model. the objective is ...
full textNew scheduling rules for a dynamic flexible flow line problem with sequence-dependent setup times
In the literature, the application of multi-objective dynamic scheduling problem and simple priority rules are widely studied. Although these rules are not efficient enough due to simplicity and lack of general insight, composite dispatching rules have a very suitable performance because they result from experiments. In this paper, a dynamic flexible flow line problem with sequence-dependent se...
full textA comparison of algorithms for minimizing the sum of earliness and tardiness in hybrid flow-shop scheduling problem with unrelated parallel machines and sequence-dependent setup times
In this paper, the flow-shop scheduling problem with unrelated parallel machines at each stage as well as sequence-dependent setup times under minimization of the sum of earliness and tardiness are studied. The processing times, setup times and due-dates are known in advance. To solve the problem, we introduce a hybrid memetic algorithm as well as a particle swarm optimization algorithm combine...
full textTwo meta-heuristic algorithms for parallel machines scheduling problem with past-sequence-dependent setup times and effects of deterioration and learning
This paper considers identical parallel machines scheduling problem with past-sequence-dependent setup times, deteriorating jobs and learning effects, in which the actual processing time of a job on each machine is given as a function of the processing times of the jobs already processed and its scheduled position on the corresponding machine. In addition, the setup time of a job on each machin...
full textMy Resources
Journal title
volume 30 issue 12
pages 1863- 1869
publication date 2017-12-01
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023